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Geometric properties of passive random advection
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Geometric properties of a random Gaussian short-time correlated velocity field are studied by considering
the statistics of a passively advected metric tensor. That describes the universal properties of the fluctuations of
tensor objects frozen into the fluid and passively advected by it. The problem of the one-point statistics of
covariant and contravariant tensors is solved exactly, provided that the advected fields do not reach diffusive
scales, which would break the symmetry of the problem.

PACS numbgs): 47.27.Gs, 05.10.Gg, 52.35.Ra, 95.30.Qd

I. INTRODUCTION velocity-field scale to the resistiv@iffusive) scale, ranges
from R~ 10% to R~ 10'2. The magnetic fluctuations are gen-

The problem of passive advection in a turbulent mediumerated at the scale of the velocity field and propagat& in
has attracted considerable attention as a solvable model &pace towards thesmal) diffusive scales. It is important that
turbulence. Exact solutions can be found in the simplifiedthe time the fluctuations of the passive field take to reach the
case in which the velocity field is chosen to be a randomdiffusive scales is large wheR is large. To illustrate this
short-time correlated Gaussian process. The statistics of depoint with an example, consider the spectral density
sity, concentration, and passive vectors advected by suchM(t,k)=(|B(t,k)|?) of some advected vector field.
field were investigated by many authoisee, e.g.[1-9]), Straightforward calculation shows that it evolveskispace
and the intermittent nature of the fluctuations, nontrivial scal-according to the following diffusion-type equati¢?,10,11:
ings of structure functions, and the anomalous role of the 7 5
dissipation were discovered. All these features are very com- _ 2
mon in the general picture of turbulence, so the problem of IM=Ad(@)kZzM+By(@)k Z M+Co()M. (1)
passive advection can serve as a model for developing ap-
propriate analytical tools. One can easily show that this evolution equation is universal:

In the present paper we consider passive adveétiothe  i.e., an equation of this form holds for the spectral density of
Lie sense¢ of a second-rank covariant tensor in any advected tensdrll]. The coefficientsA, B, and C de-
d-dimensional space. Though the master equation for thpend on the space dimensidnthe compressibility param-
probability distribution functiofPDF of the tensofEq.(5)  etera of the velocity field[Eq. (3) below], and the tensor
below] is very general, we concentrate mainly on the statisstructure of the advected field. The diffusive scales are
tics of a symmetri¢metric tensorg;; . The one-point statis- reached at times~log(R).
tics of any tensor object frozen into the fluid can be related to Second, we consider the limit of short-time correlated ve-
the statistics of such a tensor. We do not impose any restridocity field: i.e., the correlation time is assumed to be small
tions (such as incompressibilityon the velocity field; there- compared to the inverse growth rates of the advected fields.
fore, the statistics in both Eulerian and Lagrangian framesn this limit, the growth rates that we obtain for one-point
can be studied. Also, we are only interested in the “initial objects are independent of the particular spacial structure of
stage” of the advection, when the advected field does nothe velocity correlation function. For arbitrary correlation
reach diffusion scales. This allows one to explore the symtimes, such universality is lost. The latter case falls beyond
metries of the problem; those are broken when diffusion ighe scope of the present paper. We refer the reader to Refs.
included. In this context, two physical remarks are in order[8], [9], [12] and references therein for discussions of such a
before we proceed with formal mathematical consideration.regime.

First, the problem that is considered in this paper is gen- We show that the PDF of the eigenvalues of the meric
erally referred to as fast” or * kinemati¢” dynamoin its  is governed by al-particle Hamiltonian that can be split into
application to the randomly advected magnetic fields. It isswo noninteracting parts. Itsonuniversalpart describes the
relevant for physical settings where typical scales of the admotion of the center of madshe determinang of the met-
vecting velocity field are much larger than typical diffusion ric) and can be separated from the motion relative to the
scales of the advected passive fields. The astrophysics otnter of mass, i.e., the dynamics of the metric’s eigenvalues
interstellar medium and protogalactic plasmas are good exaormalized to their geometrical meax,/gY?. The Hamil-
amples of such applications. In particular, for magnetic fieldgonian of the latter motion is of the Calogero-Sutherland
generated in the galaxy or protogalaxy, the ré®mf the  type, remains the same in both Lagrangian and Eulerian

frames of reference, and therefore describes uhwersal
properties of the advection. These properties are dictated by
*Present address: Institute for Theoretical Physics, Santa Barbardje symmetries of the problem. The exact integrability of the
California 93106. Electronic address: boldyrev@itp.ucsb.edu Calogero-Sutherland Hamiltonian is known to be related to
"Electronic address: sure@pppl.gov SL(d) symmetry: the Hamiltonian can be represented as a
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guadratic polynomial in terms of the generators of the corre- In order to determine the statistics of the tensor, we fol-
sponding algebra[7,13,14. The eigenfunctions of this low a standard procedufd5,16 and introduce the charac-
Hamiltonian are the so-called Jack polynomials, which arderistic function ofe;; (t,x):

symmetric homogeneous functions of the elgenvalue§. This Z(t,5) = (expli o) gy (1.%) ). 4)
allows one to find exactly all momen¢3™) of any tensoiT

advected by the fluid. Indeed, calculating any such momenthis function is the Fourier transform of the PDF of the
reduces to averaging expressions of the tygégr) (where tensor elementg;; . Clearly, Z is independent ok due to
“Tr” denotes tracé, which are symmetric polynomials in spacial homogeneity. One finds thasatisfies
terms of the metric’s eigenvalues and can therefore be ex- P

. : . . Y4 N 9z
panded in Jack polynomials of degrek We illustrate this aZ=—[1+a(d+ 1)]011&_I_],+2a0u__0mn
(o

: K ij mn
method by calculating exactly all moments of passively ad- do do
vected vectors and covectors—in particular, of the magnetic 1/ 9 ) 9 9
field in the kinematic regime and of the passive-scalar gra- 3 Uljaakl +o“(901k U”aok' +0’“(90_|k
dient. We also demonstrate how this approach works in the
general case of a passively advected tensor of any rank. J J

Calculating the moments requires knowing the statistics ©)
of the metric§ with special initial conditionsg;;(t=0)
= §j; . However, it is also interesting to consider the evolu-whered is the dimensionality of space. This equation was
tion of the PDF of the symmetric tensgy; subject to arbi- ~ derived by taking the time derivative @f using Eq.(2), and
trary initial conditions. In this context, we show that a beau-splitting Gaussian averages. One obtains the equation for the
tiful dual picture exists: the time-dependent PDF of thePDF of ¢;; by Fourier transforming Eq5):
tensor becomes asymptotically—¢ ) invariant under the
inversion of the eigenvalues with respect to their geometrical P(p)= f exp(—io' quj)Z(fT)H do™",
mean. For example, in three dimensions, that means that if a m.n
magnetic fie_Id advected by ideally cgnducting flgid develops The original equatiori2) preserves the symmetry proper-
flux tupgs, it must develop magnetic sheets with the samgaq of the tensokp;; , which, means that one may resrict
probability. _ _consideration to advection of either symmetric or antisym-
The paper is organized as follows. In Sec. Il, we derivemetric tensors. Both reductions can be done in a similar fash-
the master equation for the PDF of the metric’s eigenvaluegon. For present purposes we only consider fluctuations of a
and analyze the symmetry properties of that PDF. In Sec. lllsymmetric covariant tensor. The corresponding results for a
we present a simple method of transforming the PDF becontravariant tensor are summarized in Appendix A. We will
tween Eulerian and Lagrangian frames, which is important iruse bothcovariant and contravarigrpictures when discuss-
the case of a compressible velocity field. In Sec. IV, weing statistics of passive vectors in Sec. V. The original ver-
discuss general properties of solutions for the PDF in thesion of this work appeared in R€R24].
two- and three-dimensional cases. In Secs. V and VI, we In the symmetric case, the POB) can be factorized as
show how the symmetry of the problem allows one to calcufollows:
late all the moments of passively advected tensors. The ar-
ticle is written in a self-contained manner; all the necessary
definitions and derivations are summarized in the Appen-
dixes.

ki 1k
+ac‘—rtaoc " “—|Z,
do’ &0")

(6)

P(&)=P@® II 8(emn—enm). (7)
m<n

where§ is the symmetric part ofp. One may think of the

tensorg;; as a metric associated with the medium. Due to

spatial isotropy, P depends only on the eigenvalues
Ni,...,Ag Of §. After rather cumbersome but essentially
simple calculations, one establishes the following master
equation for the PDF of the eigenvalues of the metric:

II. MASTER EQUATION FOR THE PDF OF METRIC
TENSOR

A covariant second-rank tensag;;(t,x) passively ad-
vected by the velocity fiel¢“(t,x) evolves according to the

equation 5P 2P
dP=2(2a+1)>, >\$7+2a2_ ik
<9t<Pij+§k¢ij,k+fﬁ¢kj+§h'¢ik=01 2 ' I\ 7 o
_ _ 5 P
where &5=a¢¥/ox' and ¢j = de;; 19x<. Let €(t,x) be a +[3d+4+2a(d +3d+3)]2i "i(;_)\i

Gaussian-Markov field:

o ) 5 A (ap Pl
(B8t X)) = il (x—x") 8(t—t"), Tt S oy T2 bidr2)
X[1+a(d+1)]P ®

K1(y)=kod — ko(y?81 +2ay'yl), y—0, (3

(from here on the tildes are droppedmong the solutions

wherea is the compressibility parameter ard=1 for sim-
plicity. Herea can vary between-1/(d+ 1) for incompress-
ible flow and 1 for irrotational flow.

of this equation, those corresponding to the PDF must be
non-negative, finite, and normalizable. The normalization is
as follows[17]:
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[ andpnaall -rf=1 @ sit)- [ 4130 IP@.0).

Clearly, the original stochastic equati®) preserves the sig- _ d—1)/2

natureyof the n?etric. We will res?rict ourspelves to the Casge of F(t’g)_f dg g V#P(g.0). (12)

all positive \'s. Since there is no means of distinguishing

between different orderings of the eigenvalues, the PDF mugn additional symmetry emerges in this context: Equations

be a symmetric function with respect to all permutations of(8) and(11) remain invariant if the coordinates of all par-

Ni,ooNg- ticles are simultaneouslgflectedwith respect to their center
Now notice that in the logarithmic variablgs=In(\;) the  of mass. Such reflection leaves the center of mass intact and

master equatior{8) describes the dynamics af pairwise reverses the signs of alf;, i.e., transforms all\; into

interacting particles on the line. Furthermore, one can cong?d/\;. The origin of this symmetry can be understood if

sider those dynamics in the reference frame associated wittne notices that the master equations for the PDF’s of the

the center of mass of the particles d '3z . Upon denot- dimensionless quantitieS;, =g~ 4g;, andG'*=gg’* are

ing the coordinates of the particles in this frame fiy=z;  the same, although the initial stochastic equations are differ-

—z and noticing that defj=g=expd), one finds thatP  ent. This symmetry leads to nontrivial results fi*»3 and

now satisfies will be considered in Sec. IV.

2

J°P P 1 .
292 agz +(2d+5)g@+ E(d-l—l) Ill. EULERIAN AND LAGRANGIAN PDF's

gP=d[1+a(d+1)]

The equation for the metric-determinant PSg,g) fol-

19 2p 2P lows from Eq.(10):
X(d+2)P +2(1+a) __E] 07§|07§]+i21a_§i[ ZS JS
d 5S=20" > g7 H(24+5)95 + 5 (O|+1)(0|+2)S
1 P oP
18 1 (P P 10 (13
* 22 tanh% (&i— 51 (agi ﬂf]) (o

where we have rescaled time by the factord[1+a(d
where thed variables{,,...,{4 are not independent since +1)]. This factor is always non-negative and vanishes if the
3 ¢;=0. The Hamiltonian remaining after the dynamics of velocity field is incompressiblea=—1/(d+ 1), in which
the center of mass are separated is translationally invariantase any time-independent functig(g) is a solution. Note
therefore, the total momentum of the particB¢gP/d¢;), is  that the right-hand side of E¢L3) becomes a full derivative

conserved. The normalization rule now is when multiplied by the Jacobiag® 12 The solution of
this equation is a log-normal distribution:
f dzl---dzd5<él+---+£d)lJ(§)|J dg g V?P=1, g (@ [In(g) + 72
S(t,9)= —F— \/— - 8—74) (14
2d(d-1)/2 d
I =—Fg— .EIJ sinh7 (&i— ), (1D where we took the initial distribution in the for(0,g)
=6(g—1).

This result can be simply understood if one notes that the
determinantg obeys the same equation a$, the squared
density of the medium. The density satisfies the continuity
equation, which can be written in logarithmic form:

where we denote the sgf,,...,{4} by {. The operator in the
square brackets in Eq10) is a Calogero-Sutherland Hamil-
tonian Hs, which is exactly solvablésee, e.g.[14,18,19;
this Hamiltonian appeared in a similar contexfh13]). The
HamiltonianH is the same for covariant and contravariant adn p+ &9, dn p+ &5 =0. (15)
tensors, and in both Eulerian and Lagrangian frames. '

It is important thatHs is self-adjointwith respect to the  Since the time increments a@f are independent identically
measurg11l). Its eigenfunctions are the so-called Jack poly-distributed random variables, the central limit theorem im-
nomials, which are homogeneous polynomials in &x@nd  plies the normal distribution of Ip. Indeed, either from Eq.
are symmetric with respect to all permutationsgef Their ~ (13) or directly from Eg. (15), one can easily establish
construction is discussed in Appendix C. We will use thesahat the density PDFR(t,p)=2p%S(t,p?) satisfies ¢;R
particular eigenfunctions of this operator in Secs. V and VI.=(y/2)(p’R)".

One sees that P is initially chosen in the factorized form So far, we have worked in an Eulerian frame, considering
P=P1(9)P2({1,...,{q), it will remain so factorized at all statistics at an arbitrary fixed poirt Now we show how the
times. Thus the statistics gfare independent of the statistics one-point Eulerian and Lagrangian PDF’s are related. Let us
of the {'s at all times if they are initially independent. In assume that initially Lagrangian particles are uniformly dis-
particular, this property of Eq.10) allows one to consider tributed in space. We denote the Eulerian PDF by
separately the PDF's for the determinant of the metric andP¢(p,{;t,X); the Lagrangian PDF b® (p,Z;t,y), wherey
for the logarithmic quantitieg;=In(\; g~ *): is the Lagrangian labdinitial coordinate of the Lagrangian
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particle; and the density of the medium byp Eq.. (19 Eecomes a Legendre operator under the chapge of
=|det@y/dx)|. The relation betweeR: and P, can be es- variablesx=coshg§). This property is a consequence of inte-

tablished from the following: grability of the initial HamiltonianHg [Eq. (10)] and will be
of use in Sec. V when one calculates the moments of passive
PE(p,é’;t,X) = < 5(p_ P(tix))5(§_ g(t,X))) vectors.
dy The nature of the solution can be easily understood if one
= f —{8(x—x(t,y))8(p—p(t,y)) first considers only the advective tefj/tanh§). The char-
P acteristic of Eq.(19) then satisfiesc=1/tanh), which im-
X 8- (1Y) (16)  Plies thatF is advected to regions whefg|>1 and, fort

—oo, that the asymptotic solution can be found from Eq.
Since the one-point PDPg(p,{;t,x) is independent of po- (19) by approximating tankj~1. The asymptotic is log-
sition (due to spatial homogenejtyone can integrate Eq. normal as expected.
(16) with respect tox. Also noting that the one-point PDF Note that the reflection symmetry— —x of Eq. (19) is
P (p,¢;ty) is independent oy, one gets just a consequence of the previously mentioned general sym-
metry A ;<>\, and does not add anything new. The function
F must beinitially chosen in such a symmetric form. This is
not so in the three-dimensional case, which we now consider
in more detalil.
Transformation to the Lagrangian frame can also be per- In three dimensions, upon integrating the delta function in
formed at the level of the original stochastic equations sucleq. (11) as before and introducing the new variabbes
as Eq.(15) with the aid of the stochastic calculgsee, e.g., =1In(\;/\;) andy=3In(A,/\3), one obtains the equation
[17] or [20]). for F(t,x,y):

If one chooses initiaII)S(O,g)océ(g—p(z)), one may sub-

1
PE(P,§)=;PL(P,§)- 17

stitute p= /g in formula (17). One sees therefore that only _ " " "
the PDF ofg is affected by the transformation between Eu- HF=(11a) Pt Pyt Fyy
lerian and Lagrangian frames. The Lagrangian version of 1 )
S(9g) is N L smrﬁx) )
tanh(x) 2 sinHy)sinh(x—y)/ *
g (e [In(g)— ] ,
RN R P T L .
T tani(y) = 2 sinf(x)sinnly—x)|" Y|’

Analogous results for the contravariant case are presented i, normalization Jacobian for this PDF i8(x,y)
Appendix A. =2 sinh&)sinh@)sinh—y).

_ The log-normal statistics such as E¢54) and(18) are a The symmetry with respect to all permutations of eigen-
signature of this problem, and they will also be present for,

f ) f the ei | o icallv T valuesA1,\,,\3 leads to the following two symmetries of
uctuations of the eigenvalue ratios in asymptotically freey o <oiutions of Eq(20):

regimes, i.e., where different ratios do not interact with each

other[3-8]. X——X, y—y—X, andxe—y. (21)
IV. PDF’'s OF EIGENVALUE RATIOS IN TWO Equation (20) posesses anothdreflection symmetry as
AND THREE DIMENSIONS well:
We saw in the previous section th&a(t,{), the PDF of X——X, y—-—Y, (22)

the ratios\;/g*®, would remain the same in both Eulerian

and Lagrangian frames. In this section we analyze the equavhich corresponds to the inversion &f /\3,A;/A3, and
tions for these PDF’s in the two-and three-dimensional casegloes not follow from Eq(21). Therefore a general initial
Having in mind numerical simulations, we will write these distribution should contain both symmetrie;, and antisym-
equations usingl— 1 independenvariables. In the general metric, F?, parts with respect to this reflection. The symme-
case such reduction is done in Appendix B. tries (21) act as reflection$22) on the points of the plane
Let us start with the two-dimensional case. It is now con-located on the liney=2x, y=x/2, andy= —x; hence, the
venient to integrate thé function in Eq.(11) and work with  antisymmetric part of the PDF? must vanish on these lines.

the logarithm of the eigenvalue ratio as a new variabbe: Chara_cteristic trajectories of E(RO) are presented in Fig.
=1In(\{/\)=3({1— ). The equation forF(t,x) then be- 1. The linesy=*x, y=2x, y=x/2, x=0, andy=0 are
comes combined in groups that are transformed by the symmetries

(21) independently. Those groups correspond to sheet, tube,
and strip volume deformations as shown. Let us concentrate
our attention on the sector=0, y<0. Due to the symme-
tries (21) and(22), this allows one to understand the behav-
As expected, the right-hand side of E49) becomes a full ior of the PDF in the entirdx, y) plane. Considering the
derivative when multiplied by the Jacobidx) =2 sinh). characteristic trajectorie@hey advectr towards the liney

Note that the differential operator on the right-hand side of= —x from both sidesor the flux of the conserved function

1
Foxt fant(x) FX}. (19
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determinantg. Since the initial distribution ofg is S(g)
=45(g—1), one can average powers @findependently to
obtain

A,=fq(n,t)(g"9),

fa(n,H)=(g""%ay-§-ap)"), (24)

where the function$y(n,t) do not depend on the statistics of
the determinant and are, thereforaiversal These func-
tions are the same in the covariant and contravariant cases,
and in both Eulerian and Lagrangian frames. The only parts

FIG. 1. Characteristic trajectories of EQO). Solid lines corre- the momentsA.. that are nonuniversal are the averages of
spond to sheet configurations, dashed lines to tubes, and dotted Iingng n 9

strips

sheets =

o strips e determinant. These averages can be calculated exactly
' using formulag(14), (18), and(A3):

F(x,y)|J(x,y)| (calculated on the ling=—X, it is found to (go)e=(gs)conta gs(2s— 1, (25)

be directed from the semisector with positivé to that with

negativeF?), one can show that the antisymmetric part of the (g5) = (g®)Lontraz gs(2s+ Dyt (26)

PDF decays with time. The symmetry of the solution with
respect to the sheet and tube configurations thus emerges The universal function§y(n,t) can, in fact, be easily cal-
asymptotically ag—o0. Again, we emphasize that this con- culated directly(cf. [6,7,21,22) if one starts from the equa-

clusion holds only until diffusion comes into play. tion for advection of a passive vectal(t,x):
Numerical solutions of Eq20) with various initial distri- o -
butions concentrated in the regidr|<1, |y|<1, confirm ga'+&a— € a=0, (27)

that the PDF becomes symmetrized very fast, at titres. o i _
In the region|x|>1, |y|>1, far from the linesy=x, y=0, where statistics of'(t,x) are given by Eq(3). However, for
and x=0, the long-time (>1) asymptotic is log-normal. methodical purposes, we prefer to rederive this result using

This asymptotic can be easily obtained from E2z). thg technique _of Jack ponno_miaIs. In addition to also being
quite simple, it furthermore illustrates the general method

that can be applied to finding momentsaofy passively ad-
V. PASSIVE VECTORS vected tensor. In Sec. VI, we show, e.g., how moments of a

. . . bilinear forma'b* can be calculated.
In this section we apply the developed formalism to pas- Formula (24) can be further simplified if one does the

sively advected vectors. Consider the evolution of the coor- ) Lo )
dinates of a particle advected by the fluidk'=x(t,y), average with respgct to thg distribution aif. Upon intro-
wherey' is the initial position of the particle, i.ex'(0yy) ducing the generating function

=y'. An infinitesimal contravariant vect@' changes under _ “Ud(a 5.

such coordinate transformation as follows'(t,X) Z(B)=(ex g™ a0 G- 20)1), 28
= (ax'/ay*)afi(y). In order to find the mean of any object one can represeriy; as
constructed out of', we have to average it with respect to

the initial distribution ofay(y) and with respect to all real- ¢ _|d"z(B)
izations of the random velocity fielel. The latter averaging o(n,O= ap"
can be done via the PDF’s for covariant and contravariant

(metrig) tensors. Let us assume that the initial distribution ofThe Gaussian average with respect to the initial distribution
the vectora' is Gaussian, isotropic, and independent ofof the vector can now be done easily, resulting in

y: (apal)=4". As an example, consider the momenAis

=(ja™):

(29

B=0

d
Z(B)=<i1_[1 [1—ﬁexmzi>]1’2>, (30)

An=((20-0-a)"), (23 N o _
where the remaining averaging is with respect to the statis-
where§ is thecontravarianttensor advected by the fluid and tics of ;. The PDF of the’s is F.(g.)"](mé(zgi) with the
with the initial conditiong’ (O)= . The distribution of Miual condition 5(¢y)---5(Zg). Itis important that the func-
this tensor can be found in the same way as that of thfOn thatis being _averaged in E(RO) is the generating func-
covariant tensor and is discussed in Appendix A. Moment lon for th_e particular class pf. Jack polynomials that are
of a covariantvectora; can be found using exactly the same elgenfgncpons of the self-adjoint Caloggro—SutherIand op-
formula (23), with § now being thecovarianttensor. eratorHg in Eq. (10). Therefore, all funct|on$29)_can be
It is easy to see that the avera@® is a sum of terms of fpunq exaqtly in the general_ case. The appropriate calcula-
the form (Tr(g'")), whereki=n. To simplify the formula tion is carried out in Appendix C. The answer is
(23), we note that the eigenvalues of the matgixcan be d
expressed as\j=g"exp(). Therefore, for all n, fd(n,t):(—
g~ "%Tr(§") depends only ori; and is independent of the 2

d-1
ex;{(T)n(Zner)(lJra)t , (3D
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where we use the Pochhammer notatioii2],= (d/2)(d/2
+1)--+(d/2+n—-1).

In the two-dimensional case, the corresponding result can.
be obtained in a rather simple manner, which nevertheles§
illustrates the main idea of the general derivation. In order to

do this, notice that the generating functidgfg), expressed
in the two-dimensional case in terms 0f 3({;—¢,) (see
Sec. V), coincides with the generating function for the Leg-
endre polynomials P,(coshk)) and, therefore, f,(n,t)
=n!({P,(coshk))). The average can now be completed with
the aid of Eg. (19. Upon multiplying it by
[J(x)|Pn(coshk)), integrating by parts twice, and using the
equation for the Legendre polynomial®)(u)(u?—1)
+2uP/(n)=n(n+1)P,(u), one gets

fo(n,t)=(1+a)n(n+1)f,(n,t),
(32
fo(n,t)=nlexpgn(n+1)(1+a)t],

which is in agreement with Ed31).
As an example, consider moments of a magnetic fiel

B'/p, wherep is the density of the fluid. Let us denote the

moments ofB' as H,={|B|?"). Upon recalling that in the

contravariant casg= 1/p2, one gets from Eq(24)
anfd(n,t)<gfn(dfl)/d>comra} (33)

where for theg average one uses the formul26) in the
Eulerian frame or formul#&25) in the Lagrangian frame.

An analogous derivation can be carried out for a covariant

vector, e.g., the gradient of a passive scAar For its mo-
mentsC,=(|V 6|>"), one finds

Cp="fq(n,t)(g"d)°, (34)

where for theg average one uses formu(@5) or (26) de-
pending on the frame of reference.

VI. PASSIVE TENSORS OF ANY RANK

We now briefly demonstrate how one can calculate ex

actly the moments of a passively advected higher-rank tens
T. Suppose that one is interested in some mon{@.
After averaging with respect to the initial distribution f
one is left with a combination of T¢g"), which are polyno-
mials of degreenk in the eigenvalues of the metriy. But
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where the polynomiald, gy andJ, 1y are constructed in Eq.
(C4). The corresponding eigenvalues ig?o)=(d+4)(d

1)/d and E{Y),=(d?~4)/d, as follows from Eq.(C10.
he answer is

8 2 d?+2d =02
B,=ex ?‘Fa yt 3 exd 2E 5 (1+ajt]
2_ ~
-l exp 2E(Py(1+ayt]|. (36)
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advected by the fluid. The contravariant vector in this case is " ¥

APPENDIX A: PDF FOR THE CONTRAVARIANT
TENSOR

The derivation of the main equations for the case of a
contravariant tensor is quite similar to the case of the cova-
riant tensor. Here we just explain the origin of the difference
and write out the main results. The dynamical equation for
the contravariant case reads
g + o'k — &\ oM - & o™ =0. (A1)

The derivation of the master equation can be carried out the
same way as in the covariant case and results in different
coefficients in theg part of Eq.(10). The { part remains
intact. This is not surprising, since the transition frgm to

¢'" does not change the ratios of the eigenvalues, but results
only in the inversion of the determinantg— 1/g. Accord-
ingly, the equation for the PDF of a contravariant tensor,

P(4,£), can be obtained from Eq10) by substitutingP
=Pg*t, g=1/g. The resulting equation for the PDF of the

SleterminantS(g), is (dropping the tildes

, S S 1
4;S=29g a—92+(2d+3)g@+§d(d+l)s, (A2)

where time has been rescaled by the factoy a6 in Sec. Ill.

any symmetric polynomial of degrem can be expanded in \when using this equation, one should remember ghaow
Jack polynomials of degrem, which can then be averaged gatisfies the same equation ap?/wherep is the density of
exactly. The result will therefore be a linear combination ofine medium. EquatiofA2) is written in the Eulerian frame.

exponents growing at the rates given by EQ10.

For example, consider a contravariant bilinear fatn,
wherea' andb* are initially independent Gaussian random
vectors,(agak)=(bibk)= &%, and find its second moment
B,=((a-b)2)=(Tr(§?)). Then,

¢ 2
32:<§i: )\i2>:<92/d>(<3(2,0)>—§<J(1,1)> , (39

For completeness, we write down the solution of E&2)
with initial distribution S(0,g)=6(g—1):
gf(d+l)/2
- S )
S(t.g 8wyt

The Lagrangian analog of EGA3) is obtained via multipli-
cation byp=1/\/g.

~ [In(g)—t7?

551 (A3)
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APPENDIX B: PDF's OF EIGENVALUE RATIOS All coefficientsu, , can be found recursively in terms of,

The 6 function Eq. in(11) can be integrated over, and W”E the aid of rt}hlsdd(fa'flnl'tlor{ZS]. h K pol .
¢ ¢, can be reduced to— 1 independenvariables, viz et us use this definition to construct the Jack polynomi-
1reod 'O als form=2 and a=2. The corresponding partitions are

the logarithms of the eigenvalue ratiosx,=3 In(\,/\g) ; . 2.
—1(£,—¢,). In these variables, the equation frbecomes (2,0,0,..) and(1,1,0,..). Using the first condition(C2), one

writes
d-1 .o d-1
J°F 1 JF
aF=(1+a)] > —5+ — d d

i oxt =L tanh(x,) 9x, J(m(x;z)=i§1 Xi2+Ai2j XiX; |
1 E’: PF 1 2’:
T ok A smt(xn Xim) d

J X;2)= X X; . C4

sinh(x,) dF sinh(x,) dF 81 a3(%:2) IE<] " €4
sinh(X,,) dx, SINA(X,) Xy (B1)

The coefficientA must be found from the requirement that
The last two terms correspond to interactions between differthe polynomials be eigenfunctions of EE3), which gives
entx’s and only enter fod=3. The normalization rule now A=2/3.
is The eigenvaluegenergies corresponding to Jack polyno-

2(d+2)(d 12 d-1 mials are

f H [sinhx, =) L1 [sinhx,)[dx,F=1. ]
(B2) ElW=2 ui+

This form of the equation foF is most convenient for nu-

merical solution and for geometric analysis such as that ofr,e energiesC5) depend on particular partitions. Any
Sec. V. symmetric polynomial of degrem can be expanded in Jack
polynomials of the same degrae Of all the other properties
APPENDIX C: JACK POLYNOMIALS of the Jack polynomials, we will need

d
> (A=) (C5)

Jack polynomial§23] J,(Xy,....Xq; @) of degreem are §
homogeneougof degreem) polynomials, depending od
variablesx;, and symmetric under all permutations xf. ll_[ m 2 b.(@)Ju (X @), (y;a), (C6)
They depend on a parameterand are labeled by partitions . i .

w of an integer numbem.
The partitionx of mis a nonlncreasmg sequence of inte- where the summation is performed over all possible parti-

gers: w=(u==ug)e’S,, such that m=u+-- tions u of all non-negative integers, arg,(«) are expan-
+pg. The ponnomiaIsJM(x/;a) vanish if the number of sion coefﬂmerjts that can be found [iR3]. .For present pur-
parts| () is greater than the number of variablésCon- ~ P0S€S, we will need the formuléC6) with the set{y;;

sider two partitionse and\ of the same length(x)=1(\) consisting of only one variable. In this case the expansion
=d. One writes thah=p if Ny+---+N;=pq+---+ u; for takes the form
eachi <d. This defines the so-callathtural (or dominance
ordering on partitions.

In order to give a formal definition of the Jack polynomi-
als, first define thenonomial symmetric function yncorre-
sponding to the partitionp:

d 0
Il ———==2 y"Qum (X a), (C7)

i=1 (1 yX)la m=0

whereu=(m) is a partition consisting of only one element.
Q(m)(X; @) stands for the properly normalized Jack polyno-

m,, =2 Xy x4, (€D mials. The explicit expression f@®@ (my(X; @) is
where the summation is over all permutationsugf,... uq- d (6)q.- ()
The Jack polynomials must, by definition, be represented as Qum(X; @)= 2 G 774 X X X
S Tyl gel i M
(C8)
G = 2 uy,m, (C2)
u=

wheref=1/a, q,=#{n|i,=I} is the multiplicity with which
and be the eigenfunctions of the Calogero-Sutherland Hamikhe numberl=1,2,...d appears ini;- i, and ©)q=06(0

tonian +1)---(0+q—1).
d 5 d ) To use these results one needs to transform the Hamil-
E ( ) 2 Xi i (c3) tonian[in the square brackets in E(LO)] to the form(C3).
= @ {7 Xi—Xj 9% Changing variables ta;=exp()=Ng Y4, one gets
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d

+2

=1 &é’»z

72
idg;

(92

NS

1 ( P i)
<1 tanh3(5—¢) \agi d¢
1(3 - o\ [d=-1\& [ s
BRETE S e
2 /1= ax

(C9

For any Jack polynomials of degrem, the corresponding
eigenvaluesEM of the Hamiltonian(C9) are
m? (d—1)

E —_F@_ __
E,u_E/L d 5

m. (C10
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In particular, the energy dD(m)(X;Z) is

5

Now notice that the averaged Jack polynomials

Q(n)(X;Z) and the functiong4(n,t)/n! have the same gen-
erating functionlsee Eqgs(30) and(C7)], whence

(C1D)

fa(n,)=n!(Qn(X;2)). (C12
Since [Eq. (10)] &F=2(1+a)HsF, where Hs is self-
adjoint with respect to the measufgl), f4(n,t) satisfies
fa(n,t)=2(1+a)E,f4(n,t), the solution of which(with
correct initial condition is the expressio31).
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