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Geometric properties of passive random advection

Stanislav A. Boldyrev* and Alexander A. Schekochihin†

Princeton University, P.O. Box 451, Princeton, New Jersey 08543
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Geometric properties of a random Gaussian short-time correlated velocity field are studied by considering
the statistics of a passively advected metric tensor. That describes the universal properties of the fluctuations of
tensor objects frozen into the fluid and passively advected by it. The problem of the one-point statistics of
covariant and contravariant tensors is solved exactly, provided that the advected fields do not reach diffusive
scales, which would break the symmetry of the problem.

PACS number~s!: 47.27.Gs, 05.10.Gg, 52.35.Ra, 95.30.Qd
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I. INTRODUCTION

The problem of passive advection in a turbulent medi
has attracted considerable attention as a solvable mod
turbulence. Exact solutions can be found in the simplifi
case in which the velocity field is chosen to be a rando
short-time correlated Gaussian process. The statistics of
sity, concentration, and passive vectors advected by su
field were investigated by many authors~see, e.g.,@1–9#!,
and the intermittent nature of the fluctuations, nontrivial sc
ings of structure functions, and the anomalous role of
dissipation were discovered. All these features are very c
mon in the general picture of turbulence, so the problem
passive advection can serve as a model for developing
propriate analytical tools.

In the present paper we consider passive advection~in the
Lie sense! of a second-rank covariant tensor
d-dimensional space. Though the master equation for
probability distribution function~PDF! of the tensor@Eq. ~5!
below# is very general, we concentrate mainly on the sta
tics of a symmetric~metric! tensorgi j . The one-point statis-
tics of any tensor object frozen into the fluid can be related
the statistics of such a tensor. We do not impose any res
tions ~such as incompressibility! on the velocity field; there-
fore, the statistics in both Eulerian and Lagrangian fram
can be studied. Also, we are only interested in the ‘‘init
stage’’ of the advection, when the advected field does
reach diffusion scales. This allows one to explore the sy
metries of the problem; those are broken when diffusion
included. In this context, two physical remarks are in ord
before we proceed with formal mathematical consideratio

First, the problem that is considered in this paper is g
erally referred to as ‘‘fast,’’ or ‘‘ kinematic,’’ dynamoin its
application to the randomly advected magnetic fields. I
relevant for physical settings where typical scales of the
vecting velocity field are much larger than typical diffusio
scales of the advected passive fields. The astrophysic
interstellar medium and protogalactic plasmas are good
amples of such applications. In particular, for magnetic fie
generated in the galaxy or protogalaxy, the ratioR of the
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velocity-field scale to the resistive~diffusive! scale, ranges
from R;108 to R;1012. The magnetic fluctuations are gen
erated at the scale of the velocity field and propagate ik
space towards the~small! diffusive scales. It is important tha
the time the fluctuations of the passive field take to reach
diffusive scales is large whenR is large. To illustrate this
point with an example, consider the spectral dens
M (t,k)5^uB(t,k)u2& of some advected vector fieldB.
Straightforward calculation shows that it evolves ink space
according to the following diffusion-type equation@2,10,11#:

] tM5Ad~a!k2
]2

]k2 M1Bd~a!k
]

]k
M1Cd~a!M . ~1!

One can easily show that this evolution equation is univer
i.e., an equation of this form holds for the spectral density
any advected tensor@11#. The coefficientsA, B, and C de-
pend on the space dimensiond, the compressibility param
eter a of the velocity field@Eq. ~3! below#, and the tensor
structure of the advected field. The diffusive scales
reached at timest; log(R).

Second, we consider the limit of short-time correlated v
locity field: i.e., the correlation time is assumed to be sm
compared to the inverse growth rates of the advected fie
In this limit, the growth rates that we obtain for one-poi
objects are independent of the particular spacial structur
the velocity correlation function. For arbitrary correlatio
times, such universality is lost. The latter case falls beyo
the scope of the present paper. We refer the reader to R
@8#, @9#, @12# and references therein for discussions of suc
regime.

We show that the PDF of the eigenvalues of the metriĝ
is governed by ad-particle Hamiltonian that can be split int
two noninteracting parts. Itsnonuniversalpart describes the
motion of the center of mass~the determinantg of the met-
ric! and can be separated from the motion relative to
center of mass, i.e., the dynamics of the metric’s eigenva
normalized to their geometrical mean,l i /g1/d. The Hamil-
tonian of the latter motion is of the Calogero-Sutherla
type, remains the same in both Lagrangian and Eule
frames of reference, and therefore describes theuniversal
properties of the advection. These properties are dictated
the symmetries of the problem. The exact integrability of t
Calogero-Sutherland Hamiltonian is known to be related
SL(d) symmetry: the Hamiltonian can be represented a

ra,
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546 PRE 62STANISLAV A. BOLDYREV AND ALEXANDER A. SCHEKOCHIHIN
quadratic polynomial in terms of the generators of the co
sponding algebra@7,13,14#. The eigenfunctions of this
Hamiltonian are the so-called Jack polynomials, which
symmetric homogeneous functions of the eigenvalues. T
allows one to find exactly all moments^T̂m& of any tensorT̂
advected by the fluid. Indeed, calculating any such mom
reduces to averaging expressions of the type Trk(ĝn) ~where
‘‘Tr’’ denotes trace!, which are symmetric polynomials in
terms of the metric’s eigenvalues and can therefore be
panded in Jack polynomials of degreenk. We illustrate this
method by calculating exactly all moments of passively
vected vectors and covectors—in particular, of the magn
field in the kinematic regime and of the passive-scalar g
dient. We also demonstrate how this approach works in
general case of a passively advected tensor of any rank

Calculating the moments requires knowing the statis
of the metric ĝ with special initial conditionsgi j (t50)
5d i j . However, it is also interesting to consider the evo
tion of the PDF of the symmetric tensorgi j subject to arbi-
trary initial conditions. In this context, we show that a bea
tiful dual picture exists: the time-dependent PDF of t
tensor becomes asymptotically (t→`) invariant under the
inversion of the eigenvalues with respect to their geometr
mean. For example, in three dimensions, that means tha
magnetic field advected by ideally conducting fluid develo
flux tubes, it must develop magnetic sheets with the sa
probability.

The paper is organized as follows. In Sec. II, we der
the master equation for the PDF of the metric’s eigenval
and analyze the symmetry properties of that PDF. In Sec.
we present a simple method of transforming the PDF
tween Eulerian and Lagrangian frames, which is importan
the case of a compressible velocity field. In Sec. IV,
discuss general properties of solutions for the PDF in
two- and three-dimensional cases. In Secs. V and VI,
show how the symmetry of the problem allows one to cal
late all the moments of passively advected tensors. The
ticle is written in a self-contained manner; all the necess
definitions and derivations are summarized in the App
dixes.

II. MASTER EQUATION FOR THE PDF OF METRIC
TENSOR

A covariant second-rank tensorw i j (t,x) passively ad-
vected by the velocity fieldjk(t,x) evolves according to the
equation

] tw i j 1jkw i j ,k1j ,i
k wk j1j , j

k w ik50, ~2!

where j ,i
k 5]jk/]xi and w i j ,k5]w i j /]xk. Let j i(t,x) be a

Gaussian-Markov field:

^j i~ t,x!j j~ t8,x8!&5k i j ~x2x8!d~ t2t8!,

k i j ~y!.k0d i j 2k2~y2d i j 12ayiyj !, y→0, ~3!

wherea is the compressibility parameter andk251 for sim-
plicity. Herea can vary between21/(d11) for incompress-
ible flow and 1 for irrotational flow.
-
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In order to determine the statistics of the tensor, we f
low a standard procedure@15,16# and introduce the charac
teristic function ofw i j (t,x):

Z~ t,ŝ !5^exp@ is i j w i j ~ t,x!#&. ~4!

This function is the Fourier transform of the PDF of th
tensor elementsw i j . Clearly, Z is independent ofx due to
spacial homogeneity. One finds thatZ satisfies

] tZ52@11a~d11!#s i j
]Z

]s i j 12as i j
]

]s i j smn
]Z

]smn

1
1

2 S s i j
]

]sk j 1s j i
]

]s jkD S s i l
]

]skl 1s l i
]

]s lk

1askl
]

]s i l 1as lk
]

]s l i DZ, ~5!

whered is the dimensionality of space. This equation w
derived by taking the time derivative ofZ, using Eq.~2!, and
splitting Gaussian averages. One obtains the equation fo
PDF of w i j by Fourier transforming Eq.~5!:

P~ ŵ !5E exp~2 is i j w i j !Z~ ŝ !)
m,n

dsmn. ~6!

The original equation~2! preserves the symmetry prope
ties of the tensorw i j , which, means that one may restri
consideration to advection of either symmetric or antisy
metric tensors. Both reductions can be done in a similar fa
ion. For present purposes we only consider fluctuations o
symmetric covariant tensor. The corresponding results fo
contravariant tensor are summarized in Appendix A. We w
use both~covariant and contravariant! pictures when discuss
ing statistics of passive vectors in Sec. V. The original v
sion of this work appeared in Ref.@24#.

In the symmetric case, the PDF~6! can be factorized as
follows:

P~ ŵ !5 P̃~ ĝ! )
m,n

d~wmn2wnm!, ~7!

where ĝ is the symmetric part ofŵ. One may think of the
tensorgi j as a metric associated with the medium. Due
spatial isotropy, P̃ depends only on the eigenvalue
l1 ,...,ld of ĝ. After rather cumbersome but essentia
simple calculations, one establishes the following mas
equation for the PDF of the eigenvalues of the metric:

] tP52~2a11!(
i

l i
2 ]2P

]l i
2 12a(

iÞ j
l il j

]2P

]l i]l j

1@3d1412a~d213d13!#(
i

l i

]P

]l i

1~a11!(
iÞ j

l il j

l i2l j
S ]P

]l i
2

]P

]l j
D1

1

2
d~d11!~d12!

3@11a~d11!#P ~8!

~from here on the tildes are dropped!. Among the solutions
of this equation, those corresponding to the PDF must
non-negative, finite, and normalizable. The normalization
as follows@17#:
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E dl1¯dldP~l1 ,...,ld!)
i , j

ul i2l j u51. ~9!

Clearly, the original stochastic equation~2! preserves the sig
nature of the metric. We will restrict ourselves to the case
all positive l’s. Since there is no means of distinguishin
between different orderings of the eigenvalues, the PDF m
be a symmetric function with respect to all permutations
l1 ,...,ld .

Now notice that in the logarithmic variableszi5 ln(li) the
master equation~8! describes the dynamics ofd pairwise
interacting particles on the line. Furthermore, one can c
sider those dynamics in the reference frame associated
the center of mass of the particlesz5d21Szi . Upon denot-
ing the coordinates of the particles in this frame byz i5zi
2z and noticing that det(ĝ)5g5exp(zd), one finds thatP
now satisfies

] tP5d@11a~d11!#S 2g2
]2P

]g2 1~2d15!g
]P

]g
1

1

2
~d11!

3~d12!PD12~11a!F2
1

d (
i , j

d
]2P

]z i]z j
1(

i 51

d
]2P

]z i
2

1
1

2 (
i , j

d
1

tanh1
2 ~z i2z j !

S ]P

]z i
2

]P

]z j
D G , ~10!

where thed variablesz1 ,...,zd are not independent sinc
Sz i50. The Hamiltonian remaining after the dynamics
the center of mass are separated is translationally invar
therefore, the total momentum of the particles,S(]P/]z i), is
conserved. The normalization rule now is

E dz1¯dzdd~z11¯1zd!uJ~z!u E dg g~d21!/2P51,

J~z!5
2d~d21!/2

d )
i , j

d

sinh
1

2
~z i2z j !, ~11!

where we denote the set$z1 ,...,zd% by z. The operator in the
square brackets in Eq.~10! is a Calogero-Sutherland Hami
tonian H̃S , which is exactly solvable~see, e.g.,@14,18,19#;
this Hamiltonian appeared in a similar context in@7,13#!. The
HamiltonianH̃S is the same for covariant and contravaria
tensors, and in both Eulerian and Lagrangian frames.

It is important thatH̃S is self-adjointwith respect to the
measure~11!. Its eigenfunctions are the so-called Jack po
nomials, which are homogeneous polynomials in exp(zi) and
are symmetric with respect to all permutations ofz i . Their
construction is discussed in Appendix C. We will use the
particular eigenfunctions of this operator in Secs. V and

One sees that ifP is initially chosen in the factorized form
P5P1(g)P2(z1 ,...,zd), it will remain so factorized at all
times. Thus the statistics ofg are independent of the statistic
of the z’s at all times if they are initially independent. I
particular, this property of Eq.~10! allows one to conside
separately the PDF’s for the determinant of the metric a
for the logarithmic quantitiesz i5 ln(li g

21/d):
f

st
f

-
ith

f
nt:

t

-

e
.

d

S~ t,g!5E ddzuJ~z!uP~g,z!,

F~ t,z!5E dg g~d21!/2P~g,z!. ~12!

An additional symmetry emerges in this context: Equatio
~8! and~11! remain invariant if the coordinateszi of all par-
ticles are simultaneouslyreflectedwith respect to their cente
of mass. Such reflection leaves the center of mass intact
reverses the signs of allz i , i.e., transforms alll i into
g2/d/l i . The origin of this symmetry can be understood
one notices that the master equations for the PDF’s of
dimensionless quantitiesGik5g21/dgik andGik5g1/dgik are
the same, although the initial stochastic equations are dif
ent. This symmetry leads to nontrivial results ford>3 and
will be considered in Sec. IV.

III. EULERIAN AND LAGRANGIAN PDF’s

The equation for the metric-determinant PDFS(t,g) fol-
lows from Eq.~10!:

] tS52g2
]2S

]g2 1~2d15!g
]S

]g
1

1

2
~d11!~d12!S,

~13!

where we have rescaled time by the factorg5d@11a(d
11)#. This factor is always non-negative and vanishes if
velocity field is incompressible,a521/(d11), in which
case any time-independent functionS(g) is a solution. Note
that the right-hand side of Eq.~13! becomes a full derivative
when multiplied by the Jacobiang(d21)/2. The solution of
this equation is a log-normal distribution:

S~ t,g!5
g2~d11!/2

A8pgt
expS 2

@ ln~g!1gt#2

8gt D , ~14!

where we took the initial distribution in the formS(0,g)
5d(g21).

This result can be simply understood if one notes that
determinantg obeys the same equation asr2, the squared
density of the medium. The density satisfies the continu
equation, which can be written in logarithmic form:

] tln r1jk]kln r1j ,k
k 50. ~15!

Since the time increments ofjk are independent identically
distributed random variables, the central limit theorem i
plies the normal distribution of lnr. Indeed, either from Eq.
~13! or directly from Eq. ~15!, one can easily establis
that the density PDFR(t,r)52rdS(t,r2) satisfies ] tR
5(g/2)(r2R)9.

So far, we have worked in an Eulerian frame, consider
statistics at an arbitrary fixed pointx. Now we show how the
one-point Eulerian and Lagrangian PDF’s are related. Le
assume that initially Lagrangian particles are uniformly d
tributed in space. We denote the Eulerian PDF
PE(r,z;t,x); the Lagrangian PDF byPL(r,z;t,y), wherey
is the Lagrangian label~initial coordinate of the Lagrangian
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particle!; and the density of the medium byr
5udet(]y/]x)u. The relation betweenPE and PL can be es-
tablished from the following:

PE~r,z;t,x!5^d„r2r~ t,x!…d„z2z~ t,x!…&

5E dy

r
^d„x2x~ t,y!…d„r2r~ t,y!…

3d„z2z~ t,y!…&. ~16!

Since the one-point PDFPE(r,z;t,x) is independent of po-
sition ~due to spatial homogeneity!, one can integrate Eq
~16! with respect tox. Also noting that the one-point PDF
PL(r,z;t,y) is independent ofy, one gets

PE~r,z!5
1

r
PL~r,z!. ~17!

Transformation to the Lagrangian frame can also be p
formed at the level of the original stochastic equations s
as Eq.~15! with the aid of the stochastic calculus~see, e.g.,
@17# or @20#!.

If one chooses initiallyS(0,g)}d(g2r0
2), one may sub-

stitute r5Ag in formula ~17!. One sees therefore that on
the PDF ofg is affected by the transformation between E
lerian and Lagrangian frames. The Lagrangian version
S(g) is

S~ t,g!5
g2~d11!/2

A8pgt
expS 2

@ ln~g!2gt#2

8gt D . ~18!

Analogous results for the contravariant case are presente
Appendix A.

The log-normal statistics such as Eqs.~14! and~18! are a
signature of this problem, and they will also be present
fluctuations of the eigenvalue ratios in asymptotically fr
regimes, i.e., where different ratios do not interact with ea
other @3–8#.

IV. PDF’s OF EIGENVALUE RATIOS IN TWO
AND THREE DIMENSIONS

We saw in the previous section thatF(t,z), the PDF of
the ratiosl i /g1/d, would remain the same in both Euleria
and Lagrangian frames. In this section we analyze the eq
tions for these PDF’s in the two-and three-dimensional ca
Having in mind numerical simulations, we will write thes
equations usingd21 independentvariables. In the genera
case such reduction is done in Appendix B.

Let us start with the two-dimensional case. It is now co
venient to integrate thed function in Eq.~11! and work with
the logarithm of the eigenvalue ratio as a new variable:x
5 1

2 ln(l1 /l2)5
1
2(z12z2). The equation forF(t,x) then be-

comes

] tF5~11a!FFxx9 1
1

tanh~x!
Fx8G . ~19!

As expected, the right-hand side of Eq.~19! becomes a full
derivative when multiplied by the JacobianJ(x)52 sinh(x).
Note that the differential operator on the right-hand side
r-
h

-
f

in

r

h

a-
s.

-

f

Eq. ~19! becomes a Legendre operator under the chang
variablesx̃5cosh(x). This property is a consequence of int
grability of the initial HamiltonianH̃S @Eq. ~10!# and will be
of use in Sec. V when one calculates the moments of pas
vectors.

The nature of the solution can be easily understood if o
first considers only the advective termFx8/tanh(x). The char-
acteristic of Eq.~19! then satisfiesẋ51/tanh(x), which im-
plies thatF is advected to regions whereuxu@1 and, for t
→`, that the asymptotic solution can be found from E
~19! by approximating tanh(x)'1. The asymptotic is log-
normal as expected.

Note that the reflection symmetryx→2x of Eq. ~19! is
just a consequence of the previously mentioned general s
metry l1↔l2 and does not add anything new. The functi
F must beinitially chosen in such a symmetric form. This
not so in the three-dimensional case, which we now cons
in more detail.

In three dimensions, upon integrating the delta function
Eq. ~11! as before and introducing the new variablesx
5 1

2 ln(l1 /l3) and y5 1
2 ln(l2 /l3), one obtains the equatio

for F(t,x,y):

] tF5~11a!FFxx9 1Fxy9 1Fyy9

1S 1

tanh~x!
1

sinh~x!

2 sinh~y!sinh~x2y! DFx8

1S 1

tanh~y!
1

sinh~y!

2 sinh~x!sinh~y2x! DFy8G . ~20!

The normalization Jacobian for this PDF isJ(x,y)
5 32

3 sinh(x)sinh(y)sinh(x2y).
The symmetry with respect to all permutations of eige

valuesl1 ,l2 ,l3 leads to the following two symmetries o
the solutions of Eq.~20!:

x→2x, y→y2x, and x↔y. ~21!

Equation ~20! posesses another~reflection! symmetry as
well:

x→2x, y→2y, ~22!

which corresponds to the inversion ofl1 /l3 ,l2 /l3 , and
does not follow from Eq.~21!. Therefore a general initia
distribution should contain both symmetric,Fs, and antisym-
metric,Fa, parts with respect to this reflection. The symm
tries ~21! act as reflections~22! on the points of the plane
located on the linesy52x, y5x/2, andy52x; hence, the
antisymmetric part of the PDFFa must vanish on these lines

Characteristic trajectories of Eq.~20! are presented in Fig
1. The linesy56x, y52x, y5x/2, x50, and y50 are
combined in groups that are transformed by the symmet
~21! independently. Those groups correspond to sheet, t
and strip volume deformations as shown. Let us concent
our attention on the sectorx>0, y<0. Due to the symme-
tries ~21! and ~22!, this allows one to understand the beha
ior of the PDF in the entire~x, y! plane. Considering the
characteristic trajectories~they advectF towards the liney
52x from both sides! or the flux of the conserved functio
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F(x,y)uJ(x,y)u ~calculated on the liney52x, it is found to
be directed from the semisector with positiveFa to that with
negativeFa!, one can show that the antisymmetric part of t
PDF decays with time. The symmetry of the solution w
respect to the sheet and tube configurations thus eme
asymptotically ast→`. Again, we emphasize that this con
clusion holds only until diffusion comes into play.

Numerical solutions of Eq.~20! with various initial distri-
butions concentrated in the regionuxu<1, uyu<1, confirm
that the PDF becomes symmetrized very fast, at timest;1.
In the regionuxu@1, uyu@1, far from the linesy5x, y50,
and x50, the long-time (t@1) asymptotic is log-normal
This asymptotic can be easily obtained from Eq.~20!.

V. PASSIVE VECTORS

In this section we apply the developed formalism to p
sively advected vectors. Consider the evolution of the co
dinates of a particle advected by the fluid:xi5xi(t,y),
where yi is the initial position of the particle, i.e.,xi(0,y)
5yi . An infinitesimal contravariant vectorai changes unde
such coordinate transformation as follows:ai(t,x)
5(]xi /]yk)a0

k(y). In order to find the mean of any objec
constructed out ofai , we have to average it with respect
the initial distribution ofa0

i (y) and with respect to all real
izations of the random velocity fieldjk. The latter averaging
can be done via the PDF’s for covariant and contravar
~metric! tensors. Let us assume that the initial distribution
the vector ai is Gaussian, isotropic, and independent
y: ^a0

i a0
j &5d i j . As an example, consider the momentsAn

5^uau2n&:

An5^~a0•ĝ•a0!n&, ~23!

whereĝ is thecontravarianttensor advected by the fluid an
with the initial conditiongi j (0,y)5d i j . The distribution of
this tensor can be found in the same way as that of
covariant tensor and is discussed in Appendix A. Mome
of a covariantvectorai can be found using exactly the sam
formula ~23!, with ĝ now being thecovariant tensor.

It is easy to see that the average~23! is a sum of terms of
the form ^Trk(ĝl)&, wherekl5n. To simplify the formula
~23!, we note that the eigenvalues of the matrixĝ can be
expressed as l i5g1/d exp(zi). Therefore, for all n,
g2n/dTr(ĝn) depends only onz i and is independent of th

FIG. 1. Characteristic trajectories of Eq.~20!. Solid lines corre-
spond to sheet configurations, dashed lines to tubes, and dotted
to strips.
es

-
r-

t
f
f

e
ts

determinantg. Since the initial distribution ofg is S(g)
5d(g21), one can average powers ofg independently to
obtain

An5 f d~n,t !^gn/d&,

f d~n,t !5^g2n/d~a0•ĝ•a0!n&, ~24!

where the functionsf d(n,t) do not depend on the statistics o
the determinant and are, therefore,universal. These func-
tions are the same in the covariant and contravariant ca
and in both Eulerian and Lagrangian frames. The only pa
of the momentsAn that are nonuniversal are the averages
the determinant. These averages can be calculated ex
using formulas~14!, ~18!, and~A3!:

^gs&E
co5^gs&L

contra5es~2s21!gt, ~25!

^gs&L
co5^gs&E

contra5es~2s11!gt. ~26!

The universal functionsf d(n,t) can, in fact, be easily cal
culated directly~cf. @6,7,21,22#! if one starts from the equa
tion for advection of a passive vectorai(t,x):

] ta
i1jka,k

i 2j ,k
i ak50, ~27!

where statistics ofj i(t,x) are given by Eq.~3!. However, for
methodical purposes, we prefer to rederive this result us
the technique of Jack polynomials. In addition to also be
quite simple, it furthermore illustrates the general meth
that can be applied to finding moments ofany passively ad-
vected tensor. In Sec. VI, we show, e.g., how moments o
bilinear formaibk can be calculated.

Formula ~24! can be further simplified if one does th
average with respect to the distribution ofa0

i . Upon intro-
ducing the generating function

Z~b!5^exp@bg21/d~a0•ĝ•a0!#&, ~28!

one can representf d as

f d~n,t !5F]nZ~b!

]bn G
b50

. ~29!

The Gaussian average with respect to the initial distribut
of the vector can now be done easily, resulting in

Z~b!5K )
i 51

d

@12b exp~z i !#
21/2L , ~30!

where the remaining averaging is with respect to the sta
tics of z i . The PDF of thez’s is F(z)uJ(z)ud(Sz i) with the
initial conditiond(z1)¯d(zd). It is important that the func-
tion that is being averaged in Eq.~30! is the generating func-
tion for the particular class of Jack polynomials that a
eigenfunctions of the self-adjoint Calogero-Sutherland
erator H̃S in Eq. ~10!. Therefore, all functions~29! can be
found exactly in the general case. The appropriate calc
tion is carried out in Appendix C. The answer is

f d~n,t !5S d

2D
n

expF S d21

d Dn~2n1d!~11a!t G , ~31!

nes
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where we use the Pochhammer notation (d/2)n5(d/2)(d/2
11)¯(d/21n21).

In the two-dimensional case, the corresponding result
be obtained in a rather simple manner, which neverthe
illustrates the main idea of the general derivation. In orde
do this, notice that the generating functionZ(b), expressed
in the two-dimensional case in terms ofx5 1

2 (z12z2) ~see
Sec. IV!, coincides with the generating function for the Le
endre polynomials Pn„cosh(x)… and, therefore, f 2(n,t)
5n! ^Pn„cosh(x)…&. The average can now be completed w
the aid of Eq. ~19!. Upon multiplying it by
uJ(x)uPn„cosh(x)…, integrating by parts twice, and using th
equation for the Legendre polynomials,Pn9(m)(m221)
12mPn8(m)5n(n11)Pn(m), one gets

ḟ 2~n,t !5~11a!n~n11! f 2~n,t !,
~32!

f 2~n,t !5n! exp@n~n11!~11a!t#,

which is in agreement with Eq.~31!.
As an example, consider moments of a magnetic fi

advected by the fluid. The contravariant vector in this cas
Bi /r, wherer is the density of the fluid. Let us denote th
moments ofBi as Hn5^uBu2n&. Upon recalling that in the
contravariant caseg51/r2, one gets from Eq.~24!

Hn5 f d~n,t !^g2n~d21!/d&contra, ~33!

where for theg average one uses the formula~26! in the
Eulerian frame or formula~25! in the Lagrangian frame.

An analogous derivation can be carried out for a covari
vector, e.g., the gradient of a passive scalar¹u. For its mo-
mentsCn5^u¹uu2n&, one finds

Cn5 f d~n,t !^gn/d&co, ~34!

where for theg average one uses formula~25! or ~26! de-
pending on the frame of reference.

VI. PASSIVE TENSORS OF ANY RANK

We now briefly demonstrate how one can calculate
actly the moments of a passively advected higher-rank te
T̂. Suppose that one is interested in some moment^T̂m&.
After averaging with respect to the initial distribution ofT̂,
one is left with a combination of Trk(ĝn), which are polyno-
mials of degreenk in the eigenvalues of the metricĝ. But
any symmetric polynomial of degreem can be expanded in
Jack polynomials of degreem, which can then be average
exactly. The result will therefore be a linear combination
exponents growing at the rates given by Eq.~C10!.

For example, consider a contravariant bilinear formaibk,
whereai and bk are initially independent Gaussian rando
vectors,^a0

i a0
k&5^b0

i b0
k&5d ik, and find its second momen

B25^(a•b)2&5^Tr(ĝ2)&. Then,

B25K (
i

d

l i
2L 5^g2/d&S ^J~2,0!&2

2

3
^J~1,1!& D , ~35!
n
ss
o

d
is

t

-
or

f

where the polynomialsJ(2,0) andJ(1,1) are constructed in Eq
~C4!. The corresponding eigenvalues areẼ(2,0)

(2) 5(d14)(d

21)/d and Ẽ(1,1)
(2) 5(d224)/d, as follows from Eq.~C10!.

The answer is

B25expF S 8

d2 1
2

dDgt GF S d212d

3 Dexp@2Ẽ~2,0!
~2! ~11a!t#

2S d22d

3 Dexp@2Ẽ~1,1!
~2! ~11a!t#G . ~36!
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APPENDIX A: PDF FOR THE CONTRAVARIANT
TENSOR

The derivation of the main equations for the case o
contravariant tensor is quite similar to the case of the co
riant tensor. Here we just explain the origin of the differen
and write out the main results. The dynamical equation
the contravariant case reads

] tw
i j 1jkw ,k

i j 2j ,k
i wk j2j ,k

j w ik50. ~A1!

The derivation of the master equation can be carried out
same way as in the covariant case and results in diffe
coefficients in theg part of Eq. ~10!. The z part remains
intact. This is not surprising, since the transition fromw i j to
w i j does not change the ratios of the eigenvalues, but res
only in the inversion of the determinant:g→1/g. Accord-
ingly, the equation for the PDF of a contravariant tens
P̃(g̃,z), can be obtained from Eq.~10! by substitutingP

5 P̃g̃d11, g51/g̃. The resulting equation for the PDF of th
determinant,S̃(g̃), is ~dropping the tildes!:

] tS52g2
]2S

]g2 1~2d13!g
]S

]g
1

1

2
d~d11!S, ~A2!

where time has been rescaled by the factor ofg as in Sec. III.
When using this equation, one should remember thatg now
satisfies the same equation as 1/r2, wherer is the density of
the medium. Equation~A2! is written in the Eulerian frame
For completeness, we write down the solution of Eq.~A2!
with initial distribution S(0,g)5d(g21):

S~ t,g!5
g2~d11!/2

A8pgt
expS 2

@ ln~g!2gt#2

8gt D . ~A3!

The Lagrangian analog of Eq.~A3! is obtained via multipli-
cation byr51/Ag.
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APPENDIX B: PDF’s OF EIGENVALUE RATIOS

The d function Eq. in ~11! can be integrated over, an
z1 ,...,zd can be reduced tod21 independentvariables, viz.,
the logarithms of the eigenvalue ratios:xn5 1

2 ln(ln /ld)
51

2(zn2zd). In these variables, the equation forF becomes

] tF5~11a!H (
n51

d21
]2F

]xn
2 1 (

n51

d21
1

tanh~xn!

]F

]xn

1
1

2 (
nÞm

d21
]2F

]xn]xm
1

1

4 (
nÞm

d21
1

sinh~xn2xm!

3F sinh~xn!

sinh~xm!

]F

]xn
2

sinh~xm!

sinh~xn!

]F

]xm
G J . ~B1!

The last two terms correspond to interactions between dif
ent x’s and only enter ford>3. The normalization rule now
is

2~d12!~d21!/2

d E )
n,m

d21

usinh~xn2xm!u)
n51

d21

usinh~xn!udxnF51.

~B2!

This form of the equation forF is most convenient for nu
merical solution and for geometric analysis such as tha
Sec. IV.

APPENDIX C: JACK POLYNOMIALS

Jack polynomials@23# Jm(x1 ,...,xd ;a) of degreem are
homogeneous~of degreem! polynomials, depending ond
variablesxi , and symmetric under all permutations ofxi .
They depend on a parametera and are labeled by partition
m of an integer numberm.

The partitionm of m is a nonincreasing sequence of int
gers: m5(m1>¯>md)PZ>0

d , such that m5m11¯

1md . The polynomialsJm(x;a) vanish if the number of
parts l (m) is greater than the number of variablesd. Con-
sider two partitionsm andl of the same lengthl (m)5 l (l)
5d. One writes thatl>m if l11¯1l i>m11¯1m i for
eachi<d. This defines the so-callednatural ~or dominance!
ordering on partitions.

In order to give a formal definition of the Jack polynom
als, first define themonomial symmetric function mm corre-
sponding to the partitionm:

mm5( x1
m1
¯xd

md, ~C1!

where the summation is over all permutations ofm1 ,...,md .
The Jack polynomials must, by definition, be represented

Jl~x;a!5 (
m<l

ulmmm ~C2!

and be the eigenfunctions of the Calogero-Sutherland Ha
tonian

HS
~a!5(

i 51

d S xi

]

]xi
D 2

1
2

a (
iÞ j

d xi
2

xi2xj

]

]xi
. ~C3!
r-

f

as

il-

All coefficientsulm can be found recursively in terms ofull

with the aid of this definition@23#.
Let us use this definition to construct the Jack polynom

als for m52 and a52. The corresponding partitions ar
~2,0,0,...! and ~1,1,0,...!. Using the first condition~C2!, one
writes

J~2,0!~x;2!5(
i 51

d

xi
21A(

i , j

d

xixj ,

J~1,1!~x;2!5(
i , j

d

xixj . ~C4!

The coefficientA must be found from the requirement th
the polynomials be eigenfunctions of Eq.~C3!, which gives
A52/3.

The eigenvalues~energies! corresponding to Jack polyno
mials are

Em
~a!5(

i 51

d

m i
21

2

a (
i 51

d

~d2 i !m i . ~C5!

The energies~C5! depend on particular partitionsm. Any
symmetric polynomial of degreem can be expanded in Jac
polynomials of the same degreem. Of all the other properties
of the Jack polynomials, we will need

)
i , j

d
1

~12xiyj !
1/a 5(

m
bm~a!Jm~x;a!Jm~y;a!, ~C6!

where the summation is performed over all possible pa
tions m of all non-negative integers, andbm(a) are expan-
sion coefficients that can be found in@23#. For present pur-
poses, we will need the formula~C6! with the set $yj%
consisting of only one variable. In this case the expans
takes the form

)
i 51

d
1

~12yxi !
1/a 5 (

m50

`

ymQ~m!~x;a!, ~C7!

wherem5(m) is a partition consisting of only one elemen
Q(m)(x;a) stands for the properly normalized Jack polyn
mials. The explicit expression forQ(m)(x;a) is

Q~m!~x;a!5 (
1< i 1¯< i m

d ~u!q1
¯~u!qd

q1!¯qd!
xi 1

xi 2
¯xi m

,

~C8!

whereu51/a, ql5#$nu i n5 l % is the multiplicity with which
the numberl 51,2,...,d appears ini 1¯ i m , and (u)q5u(u
11)¯(u1q21).

To use these results one needs to transform the Ha
tonian @in the square brackets in Eq.~10!# to the form~C3!.
Changing variables tol̃ i5exp(zi)5lig

21/d, one gets
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H̃S52
1

d
(
i , j

d
]2

]z i]z j

1(
i 51

d
]2

]z i
2

1
1

2
(
i , j

d
1

tanh1
2 ~z i2z j !

S ]

]z i

2
]

]z j
D

5HS
~2!2

1

d S (
i 51

d

l̃ i

]

]l̃ i
D 2

2S d21

2
D (

i 51

d S l̃ i

]

]l̃ i
D .

~C9!

For any Jack polynomials of degreem, the corresponding
eigenvaluesẼm of the Hamiltonian~C9! are

Ẽm5Em
~2!2

m2

d
2

~d21!

2
m. ~C10!
,

t

In particular, the energy ofQ(m)(l̃;2) is

Ẽm5S d21

d DmS m1
d

2D . ~C11!

Now notice that the averaged Jack polynomia
Q(n)(l̃;2) and the functionsf d(n,t)/n! have the same gen
erating function@see Eqs.~30! and ~C7!#, whence

f d~n,t !5n! ^Q~n!~ l̃;2!&. ~C12!

Since @Eq. ~10!# ] tF52(11a)H̃SF, where H̃S is self-
adjoint with respect to the measure~11!, f d(n,t) satisfies
ḟ d(n,t)52(11a)Ẽnf d(n,t), the solution of which~with
correct initial condition! is the expression~31!.
a

-

a,
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